
Identifying and Extracting Data from Clipboard

Ganesh N. Nadargi1, Zakir M. Shaikh2

1,2Nagesh Karajagi Orchid College of Engineering & Technology
Solapur-(MH), India

Abstract— The clipboard is a very useful tool introduced by
windows and is the mechanism for transferring information
from one application to another through copy and paste
actions. Being able to retrieve last text, file or data copied it
can be useful in many applications with invaluable
information. This paper describes the windows clipboard
structure and the process of retrieving copy/paste information
from windows.
Keywords— Windows Clipboard, Copy Paste operations,
Clipboard Extraction, Clipboard Content.

I. INTRODUCTION

There are lots of applications used in day to day life
which involves use of Clipboard by the users. It can be used
to get the content from the application and use it for other
applications. That data can be monitored if there is an
application which looks for what data is copied to
Clipboard, using which we can restrict users from copying
unwanted data and also it can be used for memory forensics
by extracting Clipboard evidence. There are lot many tools
which provide to extract data from different devices but
there are very less tools written to monitor or extract
Clipboard data from memory. The clipboard has been part
of Windows O/S family since Windows 3.1. Windows uses
the clipboard to transfer information between user
applications. As a result it bridges gap between user
functions and O/S kernel functions. As a result finding &
extracting Clipboard data requires slightly different
techniques.

II. BACKGROUND

The windows clipboard is the mechanism that Microsoft
windows operating system uses to allow data to be shared
between applications. It first appeared in Windows 3.1,
although its functionality has greatly increased since then.
Table 1 shows the standard formats used by the clipboard.
However, Microsoft provides ability for private data
formats, formats that are application specific, and that could
be registered so that other applications could transfer data
in these formats.

For copying more complex data than text to the clipboard,
Windows makes available several APIs which make
extraction much more difficult. The original method of
exchanging data between applications was dynamic data
exchange (DDE). In 1990, Microsoft released object linking
and embedding (OLE) enabling compound files. Compound
files have most of the file in a primary format (for e.g. a
Microsoft Word document) and smaller sections in one or
more other formats either linked in or embedded. Microsoft
then updated the (OLE) and extended to a Compound
Object Model (COM) in which Uniform Data Transfer

(UDT) and Drag and Drop features where added. For e.g.
when a file is dragged from Windows Explorer to the
Desktop, this is accomplished internally via the Windows
clipboard. The functionality changed over the years, first
with the creation of ActiveX and most recently with the
advent of .NET framework.

TABLE I
PREDEFINED CLIPBOARD FORMATS

Constant Value Description
CF TEXT 0x0001 Text format. Each line ends

with a CR/LF combination.
Null terminated

CF BITMAP 0x0002 A handle to a bitmap
CF SYLK 0x0004 Microsoft symbolic link

format
CF DIF 0x0005 Software Arts Data

Interchange Format
CF TIFF 0x0006 Tagged-image file format
CF PENDATA 0x000A Data for the pen extensions

to Windows
CF RIFF 0x000B Represents audio data more

complex than can be
represented in a CF_WAVE
standard wave format

CF LOCALE 0x0010 The data is a handle to the
Locale identifies a list of
files

CF WAVE 0x000C Represents audio data in one
of the standard wave formats

CF PALETTE 0x0009 Handle to a color palette
CFx UNICODETEXT 0x000D Unicode text format. Each

line ends with a CR/LF
combination. Null
terminated

CF METAFILEPICT 0x0003 Handle to a metafile picture
format as defined by the
METAFILEPICT structure

CF OEMTEXT 0x0007 Text format containing
characters in the OEM
character set. Each line ends
with a CR/LF combination.
Null terminated

CF DIB 0x0008 A memory object containing
bitmapinfo structure
followed by the bitmap bits

CF ENHMETAFILE 0x000E A handle to an enhanced
meta file

CF HDROP 0x000F A handle t_type HDROP
that identifies a list of files

CF DIBVS 0x0017 A memory object containing
a bitmapvsheader structure
followed by the bitmap color
space information and the
bitmap bits

Ganesh N. Nadargi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2127-2129

www.ijcsit.com 2127

III. METHODOLOGY

There are many different ways possible to extract data
from clipboard, one of which is described below using
which the data can be extracted and identified. The below
fig describes steps required for extracting data.

First, functions that used to access clipboard are
identified. Then the clipboard data is accessed using those
functions and the type of data is identified depending on its
properties. The data retrieved is classified in different
formats and if the required format is found in the clipboard
then it is tagged. Finally the identified data is extracted and
used depending on applications.

Fig. 1 A process of extracting data from clipboard

A. Clipboard classes and Methods

While there is a large amount of documentation on how
to use and access the Windows clipboard via application
program interfaces (APIs), there is less documentation on
the methods used other than APIs.

Extending classes like Clipboard we can access the data
stored in the clipboard using its constructions and different
methods.

The getSystemClipboard is called to retrieve the pointer
to the clipboard data. This provides handle to the clipboard
data. The data can then be used to analyse type and its
properties. The Toolkit class is the main class which is use
to get the system clipboard. A DataFlavor provides Meta
information about data. Data Flavor is typically used to
access data on the clipboard or during drag and drop
operation. FlavorListeners may be registered on an instance
of the Clipboard class to be notified about the changes to
the set of DataFlavors available on this Clipboard. There
are different data flavors that provide the type of data that is
stored in the clipboard. Those flavors are classified
depending on file formats.

isDataFlavorAvailable method is used to check whether
the data flavor of the data in the clipboard is in the list of
valid data flavors. Manipulating the clipboard data is quiet

easy but it will be not useful in applications where the
memory forensics is required. So care needs to be taken
while handling pointer of the clipboard which is directly
accessed.

B. Implementation

Using above classes and methods the data can be
obtained from the clipboard. The below algorithm can be
used as the basic layout for the working of extraction.

Clipboard c;

c=getSystemClipboard();

if(DataFlavor is Available)

getdata(DataFlavor);

It is possible that the user closed the application after
copying data to the clipboard. Recall that the clipboard
bridges user space and kernel space. While each process has
a local copy of the clipboard once it has accessed the
clipboard functions, the kernel also has the clipboard.
Therefore, until overwritten, clipboard data for a closed
process is still available in the clipboard.

It is also possible to change the contents of the clipboard
using setContents method. But the owner on the current
control is shifted to the application which modifies the
content of the clipboard data. For e.g.

Clipboard c;

StringSelection cnt= new StringSelection(“Data”);

c.setContents(cnt);

As shown above the current data flavor is been replaced
by the String flavor as the strings “Data” is been placed in
the clipboard replacing the older data. Clipboard class is
much useful for altering data in the clipboard without
letting the user realise about it. It can be also used for the
applications which are based on monitoring the clipboard
and restricting the contents to be copied

IV. CONCLUSIONS

The above techniques used for accessing and
identification of data in the clipboard are implemented
successfully. As the generic classes and the methods are
used it can be easily modified or enhanced with the other
codes in order to use for different platforms of operating
systems.

Using those accessing and retrieving methods different
applications can be implemented at ease, such as clipboard
managers, clipboard forensics and clipboard restriction
tools.

ACKNOWLEDGMENT

This work is implemented as the part of dissertation
curriculum. It is supported by N. K. Orchid college of
Engineering and Technology. The views expressed in this
paper are those of the authors and do not represent the
views or policies of NKOCET.

Find the relevant
function

Extract data from
that function

Identify the type
of data

Perform actions
depending on its
type

Ganesh N. Nadargi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2127-2129

www.ijcsit.com 2128

REFERENCES
[1] Allan R. History of the personal computer: the people and the

Technology. Allan Publishing; 200.
[2] Microsoft.com How to add data to the clipboard,

http://www.microsoft.com/windowsxp/using/setup/tips/clip-
book.mspx. [accessed 12.01.15].

[3] Microsoft.com OLE Background, http//msdn.microsoft.com/en-
us/library/aa271002(v=VS.60).aspx.[accessed 12.01.15].
James Okolica, Gilbert L. Peterson, “Extracting the windows
clipboard from physical memory”, Science Direct(2011).

[4] Oracle.com Class Clipboard,
http://docs.oracle.com/javase/7/docs/api/java/awt/datatransfer/Clipb
oard.html. .[accessed 22.03.15].

[5] Oracle.com Class Toolkit,
http://docs.oracle.com/javase/7/docs/api/java/awt/Toolkit.html.[acce
ssed 22.03.15].

[6] S. Li, S. Lv, X. Jia and Z. Shao “Application of Clipboard
Monitoring Technology in Graphic and Document Information
Security Protection System” published in Third International
Symposium on Intelligent Information Technology and Security
Informatics, IEEE 2009.

Ganesh N. Nadargi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2127-2129

www.ijcsit.com 2129

